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1. Jntroduction 

The behavior of asymptotically free gauge theories with massless fermions 

transforming as a complex representation of the gauge group has been the sub- 

ject of much speculation [I]. Especially intriguing is the suggestion that many 

such theories are likely to contain massless composite termions [2]. 

We will refer to a gauge theory with ferrhions transforming as a complex 

representation of the gauge group as a “chiral gauge theory,” because the 

gauged symmetry is a c&al symmetry, rather than a vector-like symmetry as 

in QCD. That is, the gauge symmetry forbids masses for at least some of the ele- 

mentary fermions. Examples are the standard SU(3) x SU(2) x U( 1) model, and 

the grand uaitled sU(5) model. 

A technical obstacle, the fermion doubling problem, has prevented the con- 

struction of chirel gauge theories on the lattice. It is important to surmount 

this obstacle, both to ensure that continuum chiral gauge theories really exist, 

and to provide a framework for doing nonperturbative calculations in these 

theories. In this paper, we propose a new way of dealing with the fermion dou- 

bling problem in a chiral gauge theory. Briefly, the basic idea of our approach is 

that the unwanted ‘mirror termions” can acquire large masses consistent with 

gauge invariance by pairing up with c-o&e fermion states with appropriate 

gauge quantum numbers. These composite termions may be bound, not by the 

gauge interaction itself, but by an auxiliary interaction introduced for this expli- 

cit purpose. Thus, the mirror fermions can be forced to decouple as t,he contin- 

uum limit is approached. 

Nonperturbative calculations in chiral gauge theories are important 

because they are necessary to answer the central dynamical question concern- 

ing these theories, which may be formulated as Coliows: Consider an 
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asymptoticahy free gauge theory with gauge group G and with massless left- 

handed Weyl fermlons transforming as some complex representation of G. If the 

fermion representation ls reducible, then this theory respects a group G1 of glo- 

bal flavor symmetries. We wish to know how the G, symmetry is realized. This 

question has two parts: (1) What subgroup HI of G, escapes spontaneous sym- 

metry breakdown? (2) What is the representation content under HI of the mass- 

less fermions in the spectrum of the theory? 

The massless fermions may be either composite or elementary, for the G 

gauge interaction may or m+y not be exactly confining. (Indeed, finding the 

realization of the gauge symmetry is a second very important dynamical prob- 

lem.) If. for example, the gauge group G is spontaneo&Iy broken to a subgroup 

H, massless elementary termions may appear in the spectrum which are H 

singlets, but not G singlets. If. however, the G interaction confines, then all phy- 

sical states, including any massless fermions, must be G-singlet composite 

states. Whether elementary or composite, the massless fermions are prevented 

from acquiring masses by the unbroken H’davor symmetry. 

F’inding the realization of the global G, symmetry is equivalent (if we ignore 

possible discrete subgroups of G, and H, and possible “accidental” massless par- 

ticles) to identifying the massless spe.ctrum of the theory, since a (necessarily 

composite) Goldstone boson is associated with each spontaneously broken gen- 

erator of Gf It is a problem with a qualitative rather than a quantitative solu- 

tion. Nonetheless it is a dUllcult strong coupling problem, to which the solution 

is not known. 

An important step toward solving this problem was taken by ‘t Hooft [a], 

who argued that the massless fermions in the spectrum must obey a remarkable 

algebraic condition-they must produce the same triangle anomalies for the 

unbroken flavor group HI as the elementary fermions. This condition places 



constraints on the HI representation content of the massless fermions that, in a 

confIning theory, are highly nontrivial, because G-singlet 

must typically be in different representations of HI than 

IDiOIlS. 

composite fermions 

the elementary fer- 

The ‘t Hooft anomaly condition alone, however, does not uniquely determine 

the realization of the global GI symmetry, even if exact confinement is assumed. 

Further constraints are needed to determine which of the many realizations of 

G, allowed by the anomaly condition is actually picked out by the dynamics of a 

particular chiral gauge theory. For vector-like theories such as QCD, we can 

appeal to rigorous inequalities [4] or to the behavior of the theory in the limit of 

a large number of colors [5] to establish that global chiral symmetries are spon- 

taneously broken. But analogous inequalities have not been derived for cbiral 

gauge theories, and it has not yet proved possible to predict unambigllously the 

behavior of a cbiral gauge theory in the N + 0 limit {6]. We could attempt to 

formulate dynamical hypotheses which, together with the anomaly condition, 

permit us to reach conclusions about the realization of the global ftavor sym- 

metry in various chiral gauge theories [7]. But we would rather attempt to 

determine how &tvor symmetries are realized by calculating instead of guess- 

ing. The only available calculational methods which we believe to be powerful 

enough to provide answers are the methods of lattice gauge theories. This, then, 

is the motivation for attempting to construct chiral gauge theories on the lat- 

tice. 

Before going on to the formulation of chiral gauge theories on the lattice, 

we will briefly review en example of a chiral gauge theory [1,2]. The example 

serves to clerify’the dynamical issues. We shall also be referring back to it later, 

because much of our discussion of lattice chiral gauge theories will be carried 

out, for the sake of definiteness, in the context of this example. 
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In this example, the gauge group is G = SU(5) and the termions are left- 

handed two-component spinors, 

transforming as the representations 10 and 3 respectively of SU(5). (Note that 

SU(5) anomalies cancel for this choice of the fermion representation content.) 

This is a chiral gauge theory, because no SU(S)-si.nglet Lore&z-invariant fermion 

bilinear can be constructed from (pv and $‘. 

The global flavor symmetry of this model is GJ = U( 1). where the fermions 

carry U( 1) charges ! 

G,=l, q*=-3. 0.2) 

(The independent U(1) symmetry is destroyed by SU(5) instanton effects.) We 

wouLd like to know how this global U( 1) symmetry is realized. 

One particulariy simple, and therefore pLausible, possibility is that the U( 1) 

symmetry is unbroken, and a massless composite fermion couples to the SU(5)- 

singlet operator B = w Si@, which carries the U(1) charge QB = -5. It is easily 

verified that this realization of the U(1) symmetry satisfies the ‘t Hooft anomaly 

conditions, 

48 = m?, + 56*, 

o&d3 = w?,)3 + 5(6?# * 
(1.3) 

But is is also possibie that the U(1) symmetry is spontaneously broken. Spon- 

’ taneous symmetry~breakdown would be signaled by a vacuum expectation value 

for an SU(S)-singlet. operator which carries a U(I) charge, such as BB or (~9)~. 

General algebraic arguments do not allow us to determine which of these possi- 

bilities is favored by the dynamics of this model. It is for this purpose that we 

wish to study the SU(5) model, and other chiral gauge theories, on the lattice. 



In Section 2, we review the technical difTlculty, the fermion doubling prob- 

lem, which arises when a fermion deld is defined on a lattice, and in Section 3 we 

recall a method developed by Wilson for dealing with the doubling problem in 

QCD. In Section 4. we propose a generalization of Wilson’s method which can be 

applied to chiral gauge theories and illustrate its use in the SU(5) model 

described above. We formulate a strong-coupling expansion for the SU(5) model 

in Section 5. Section 8 contains speculations about the continuum limit of a 

chiral gauge theory. Section 7 contains conclusions. In App.endlx A the strong- 

coupling expansion is described in greater detail, and in Appendix B, we explain 

how our methods can be applied to other examples of chiral gauge theories. 

2 I.attlceFermioas 

A technical ditkulty arises when fermioh fields are defined on a spatial lat- 

tice. The difficulty, .the fermion “doubling” problem, may be understood in 

several digerent ways. Its essence can be appreciated if we consider the 

discrete Dlrac equation for a free massless fermion in one spatial dimension [S]. 

This equation has the form 

(2.1) 

where 7~ is an integer which labels the lattice sites, a is the lattice spacing and a 

is a Dirac matrix which has eigenvalues j, 1. The Fourier transform of this equa- 

tion for an eigenstate of a with eigenvalue + 1 is 

0= sinka --. IL . (2.2) 

The Fourier modes which survive in the continuum limit are those which have 

Mite w as a approaches zero. In addition to the “ordinary’ modes with ka w 0. 

which have negative group velocity and therefore correspond to left-moving 
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fermions, the surviving modes include the “mirror” modes with La w A, which 

have positive group velocity and correspond to right-moving fern-dons. These 

mirror fermions are especially troublesome if we wish to construct theories with 

gauged chiral symmetries. For each left-moving fermion carrying given quan 

tum numbers in the theory, there will appear uninvited a right-moving fermion 

with the same quantum numbers. A theory which was intended to be chiral 

becomes vector-like. 

It is instructive to note that the doubling of fermion modes can be under- 

stood as a consequence of a symmetry, a discrete symmetry of the lattice 

action [Q-11]. For exzunple. the lattice action for a free Dirac fermion is 

so = $ c wwn+p - *,+I + m c J*% * n.P n 

which is invariant under the symmetry operations, 

(2.3) 

(2.4) 

Each of the symmetry operators T, when acting on a long wavelength mode with 

k,a w 0, produces a mirror mode with k,a N K. Thus the discrete symmetry 

requires ordinary ‘modes and mirror modes to have equal mass and to couple to 

all flavor symmetry currents with equal strengths, so that mirror modes remain 

coupled to ali long-wavelength physics, and survive in the continuum limit. In 

four spacetime dimensions the number of fermion species is increased sixteen- 

fold. 

In fact, this spectrum doubling is not just a property of the action eq. (2.3). 

but a quite general property of lattice fermion theories [ 121. Perhaps the 

deepest and most general way of understanding the reason for the survival of 

the mirror modes emerges when we consider the anomalous global flavor 



symmetries of’ a given model [10,11.13]. For example, consider QCD with h 

massless quark flavors, for which the axial SU(tr)t x Sum currents can be 

seen by a continuum perturbation theory calculation to have anomalies [14]. 

The Ward identities derived from the conserved S’U(n), x $lJ(n)~ currents are, 

however, satisfied without any snomalies in the lattice theory. Anomalies are 

associated with short-distance ambiguities [15], and these do not occur in the 

lattice theory, because it is perfectly well-defined at short distances. The con- 

tinuum limit of the lattice theory therefore has no SU(~)L x SU(TL)R anomalies. 

and mirror ferndons must survive in the continuum limit in order to cancel the 

anomalies of the ordinary fermions. This argument demonstrates that fermion 

doubling is not a shortcoming of any particular type of discretization method, 

but a very general disease associated with any reasonable means of regularizing 

the short-distance behavior of a theory with continuous chiral symmetries. 

It has been suggested that lattice regularization which preserves chiral 

symmetry and avoids fermion doubling can be achieved in a lattice theory with a 

nonlocal action [ 161. However, this claim is diiTicult to verify in perturbation 

theory [17]; perturbation theory cannot be implemented, because of infrared 

singularities, unless the nonlocality is smoothed out, which then restores the 

fermion doubling. Furthermore, a nonperturbative version of the anomaly argu- 

ment described above indicates that fermion doubling is not really avoidable 

unless the chiral symmetry is explicitly broken [16]. Evaluating whether the 

method of ref. [16] can really be used to construct a continuum theory with an 

undoubled fermion spectrum appears to involve subtleties associated with tak- 

ing the large volume limit [.19]. We will not consider these issues further in this 

paper. 



The fermion doubling problem is especially severe in a chiral gauge theory, 

because the unwanted mirror modes transform a theory which was intended to 

be chid into a vector-like theory. But it occurs, in a milder form, even in QCD. 

fi we naively construct lattice QCD with one fermion !Ilavor, we obtain a theory of 

sixteen flavors (in four spacetime dimensions). W&on [20] has proposed a 

method for eliminating the extra fermion modes in QCD, which has been adopted 

in some numerical calculations [21]. 

Wilson suggests that a perturbation be added to the QCD lattice action of 

the form 

where 6s represents the discrete Laplacian operator 

(3.1) 

(3.2) 

(We have replaced link variables by 1 in eq. (3. l).) Because (3.1) is a dimension 

5 operator in the continuum limit, one might expect it to become an irrelevant 

operator in the infrared, and not aBect the continuum limit at all. This expecta- 

tion may be justified for the ordinary modes with ka m 0, but for the mirror 

modes with ka m n, this operator is not irrelevant. In fact, it generates an 

effective mass M for the mirror modes of order ak* m I/ a which splits the mir- 

ror modes from the ordinary modes, and causes the mirror modes to decouple 

in the continuum limit. 

The perturbation (3.1) can generate masses for the mirror modes which 

split these modes from the ordinary modes only because it explicitly breaks 

both chiral symmetry and the discrete symmetries (2.4). Once chiral symmetry 

is explicitly broken, nothing can prevent the dimension three operator 



(3.3) 

from being induced. This operator is relevant for e+en the o&nary fermion 

modes. If we wish to obtain chirel-invariant QCD in the continuum limit we must 

carefully tune one free parameter in our lattice action in order to guarantee 

that m approaches zero as a -L 0. That such tuning is required to attain a 

chiral-invariant continuum theory should not be regarded as a serious 

shortcoming of Wilson’s method. QCD contains a free parameter, an intrinsic 

quark mass, and the chiral-invariant theory corresponds to a particulsr choice 

of this parameter, namely zero. To pick out the chiral+ymmetric theory we 

must adjust a knob to set the bare mass equal to zero. In practical c&x&&ions, 

one may use Wilson’s method to determine whether cbiral symmetry is span 

taneously broken in the continuum theory. That is, one can check that it is pos- 

sible by tuning one parameter to choose the pion mass to be zero, end that the 

massless pion obeys the low-energy theorems which should be sawed by the 

Gold&one boson of chiral symmetry. 

It is also possible to understand how the anomalies of chiral 

SU(n)t x sum are restored in the continuum limit of the lattice theory 

[10,11,22]. Matrix elements of the divergences of the chiral symmetry currents 

J> and J2 couple to the nearly massless ordinary termions as well as to the 

mirror ferndons with masses M - l/a. As &I -b 0, the mirror fermions decouple, 

but as they do so they reproduce the local anomaly terms. Indeed, one method 

used to compute the anomaly in continuum perturbation theory was to intro- 

duce a heavy regulator fermion to control linear ultraviolet divergences and 

then allow the regulator fermion mass to approach inftnity [14]. In the lattice 

theory, mirror fermions assume the role of regulator fermions. 
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4. AGentsmlizaUon d Wiiscm’s MethaS 

We 888 that Wilson’s method allows us to take a continuum limit of lattice 

QCD which has all the desired properties of the continuum theory, inckling the 

desired number of light fermions. Now. what about theories which are not 

vector-like, but instead have fermions in a complex representation of the gauge 

group? For these chiral gauge theories, the doubling problem is especially deli- 

cate, for the presence of the mirror modes in the continuum limit alters the 

theory in an essential way. It converts a theory which was intended to be chiral 

into a vectorchke theory. 

Wilson’s method cannot be straightforwardly extended ‘to chiral gauge 

theories, because it is not possible to construct gauge-invariant, Lorenta 

invariant bilinears for all the fermions in a chiral theory. A term of the form 

(3.1). giving masses of order l/a to all of the mirror fermions, would necessarily 

break the gauge symmetry. 

One might hope that it is possible to arrange in a chiral lattice gauge 

theory, without any explicit breaking of gauge invariance, for the mirror modes 

to obtain large masses spontaneously [M]. But this approach is unlikely to yield 

the desired continuum limit. for two reasons [ 111. First, the large masses of the 

mirror fermions are bound to be fed down through gauge boson exchange 

effects, to the ordinary fermions modes, and it is not clear how these masses 

can be tuned to zero without introducing non-gauge-invariant counterterms. 

Second, spontaneous generation of fermion masses means, in a chiral gauge 

theory, spontaneous breakdown of the gauge symmetry. Unless, as seems 

unlikely, it is possible to arrange by a suitable tuning of parameters for the 

Goldstone bosons to decouple, some of the gauge bosons wllI acquire masses of 

order l/ a. In the continuum limit the gauge group will be a subgroup of the ori- 

ginal gauge group, under which the fermion representation is real. This will 
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signal, not a spontaneous breakdown of the gauge symmetry due to the effects 

of the strong gauge coupling, but rather a failure to construct the desired con- 

tinuum theory. 

We propose an extension of Wilson’s method which eschews both explicit and 

spontaneous breaking of the gauge symmetry. We intend to add a perturbation 

to the lattice action of a chirsl gauge theory, analogous to Wilson’s term, which 

wiU cause the mirror fermion modes to decouple in the continuum limit. 

As will be explained in Sections 5 and 6, this perturbation will bind compo- 

site fermions which have appropriate quantum numbers to pair up with the 

unwanted mirror fermions and give them large gauge-invariant masses. But, 

before considering the effects of the perturbation in detail, let us list some of 

. the general properties that it must have, and see how it is constructed 

Our discussion of the fermion doubling problem in Sections 2 and 3 suggests 

that we should require that this perturbation satisfy the following four condi- 

tions. F’irst it must be gauge invariant. Second, it must break explicitly all glo- 

bal davor symmetries which have anomalies. Third, it must break explicitly any 

discrete symmetries which relate the mirror modes to the ordinary modes. 

Fourth, it must be “relevant” for the mirror modes, but “irrelevant” for the ordi- 

nary modes. Wilson’s term (3.1) for QCD has all these properties. In a chirsl 

gauge theory a term satisfying these four requirements necessarily involves 

mukifermion couplings or couplings of fermion bilinears to auxtliary scalar 

fields which also couple to the gauge fields. In either case, the hypotheses of the 

no-go theorem of Nielsen and Ninomiya [ 123 are not satisfied. 

So far. we have only explained why we believe that these four conditions are 

necessary, but we have not explained how a perturbation satisfying these condi- 

tions might eflect the decoupling of the mirror modes in a chiral gauge theory. 

Postponing this explanation until later, let us first consider how the needed 
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perturbation is constructed in a particular example-the SU(5) model described 

in Section 1, with fermions 

10 5. (4.1) 

This model has a global U(1) flavor symmetry, and the U(1)’ anomaly can be 

saturated by a composite fermion which couples to the operator B = (pv #3cj. 

The simplest way to construct a perturbation satisfying our criteria is to intro- 

duce a “spectator” fermion x which is an SU(5) singlet, and the couplings 

(4.2) 

+ A,B,+G i@ C,,D, + . . . - 4A,,B,C,,D,,). (4.3) 

(Here the link variable C@) transforms as A does under the gauge group 

G = s-u(5).) 

This perturbation leaves unbroken only an SU(5) x U( 1) symmetry which 

has no anomalies. The q Q 0 9 term has the same structure as is generated by an 

SU(5) instanton in the continuum theory, it explicitly breaks the U( 1) symmetry 

which will acquire the familiar ZP(Ffi anomaly in the continuum limit 

[ 10,11,22,24]. The pPg$x term respects a U(1) symmetry under which the spec- 

tator fermion x carries a U( 1) charge opposite to that of the composite operator 

B = 0 $3. Therefore, the U( 1)’ anomalies cancel. 
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The “derivatives” appearing in (4.3) serve two functions. First, they expli- 

citly break the discrete symmetries which would otherwise relate the ordinary 

fermion modes and the mirror modes. Second, they enhance the interactions of 

the mirror modes relative to those of the ordinary modes. 

As we will see, it is thus possible, if the coefI!icients ri,te in eq. (4.2) take 

values in a suitable range, that the mirror modes interact sufZciently strongly 

to form bound states, while the ordinary modes do not. It is in this sense that 

the perturbation can be relevant for the mirror modes, but irrelevant for the 

ordinary modes. 

Once we introduce SJ(T~,T~) nothing can prevent the appearance of lower- 

dimensional terms which are allowed by the remaining symmetries. These 

terms, analogous to the mass term (3.3) inQCD, are 

Thus, the complete lattice action in the SU(5) example contains the perturba- 

tions (4.2) and (4.4) in addition to usual gauge-invariant kinetic terms for the 

fields p and J# and a free kinetic term for the ffeld x. 

The perturbations of eq. (4.2) and (4.4) superficially resemble those intro- 

duced by Swift [23] in the context of the standard SU(2) x U( 1) electroweak 

model, so we should stress the key difference between his approach and ours. In 

ref. [23], mirror termions acquire mass through the spontaneous breakdown of 

the electroweak gauge symmetry, and gauge bosons also acquire mass in weak 

coupling perturbation theory. In our approach, manifest gauge invariance is 

retained; in particular, gauge boson masses vanish to alI orders of weak coupling 

perturbation theory. 
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We should also emphasize the important difference between our method in 

chiral gauge theories and Witson’s method in QCD. Our perturbation (4.2) has 

been constructed to explicitly nullity the general arguments given in Section 2, 

which require the survival of mirror fermion excitations in the continuum limit. 

Wilson’s term (3.1) plays the same role in QCD. However, the effect of Wtion’s 

term on the mirror fermion modes can be studied in weak-coupling perturbation 

theory [25]. while in a cbiral gauge theory. the mirror modes are prevented 

from acquiring masses by the gauge symmetry to ah orders in weak-coupling 

perturbation theory. To claim that our method removes the fermion doubling 

problem, then. we must argue that weak-coupling perturbation theory is 

misleading, because the mirror modes are strongly coupled by the perturbation 

(4.2). Tbi~ argument is strengthened by the strong-coupling expansion formu- 

lated in the next section. 

Our goal is to construct a theory which exhibits chiral fermion content at 

distances much shorter than the confinement scale of the gauge interaction At 

short distances, the gauge coupling g is weak, so we may consider, as an excel- 

lent approximation to the actual theory at short distances, the case in which 

g = 0. and the only nonvanishing couplings are rl.r2,A1,& detied in Eq. (4.2), 

(4.4). The problem of constructing the SU(5) chirsi gauge theory with the fer- 

mien content 10 + % becomes, in the g = 0 limit, the problem of constructing a 

lattice theory with an exact SU(5) chiral symmetry such that, as a * 0, there 

are massless free fermions transforming as 10 + 6 under SU(5) and all other fer- 

mien modes with SU(5) quantum numbers are pushed up to infinite mass. 

In the SU(5) model, the lattice action in the g = 0 limit becomes 
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where SL, is the free kinetic action of the indicated Fermi fleld. and SO, Sz are 

given by eq. (4.2) - (4.4). with all link variables U,,, replaced by 1. The theory 

defined by (5.1) can be studied analytically in expansions about two simple lim- 

its: the weakcoupling Iimit Xi = h = 71 = rs = 0, and the strong-coupling limit 

n,=+=n,=q=7*=0. 

The weak-coupling limit defines a continuum theory with a doubled fermion 

spectrum. It is not the continuum theory we seek. 

The strong-coupling limit is a static limit in which no propagation occurs at 

a& it. is very distant from any continuum theory. It is nonetheless an interest- 

ing limit to study, because the degeneracy between ordinary fermion modes and 

mirror modes is lifted in the expansion about this limit in powers of rls2. We 

expect that the theory detlned by (5.1) has a nontrivial phase structure, and 

that this strong-coupling expansion may provide us tith information-about a 

continuum limit in which the mirror modes do not survive. The phase structure 

of the theory will be further discussed in the next section. Here we explain how 

the strong-coupling expansion is formulated More detail can be found in Appen- 

diXA 

In the strong-coupling Iimit, sll terms in the lattice action which link neigh- 

boring sites are dropped, and all integrals over field variables factorize into a 

product of integrals, each performed at a single site. The existence of a sensible 

strong-coupling limit places a nontrivial constraint on S&i, As): the “vacuum 

functional” of the one-site theory will vanish by Fermi statistics unless there is a 

term in the expansion of eeso in which each termionic variable appears exactly 

once. With Ss as in eq. (4.4). we see that, since ‘p has 10 components, 9 5 com- 

ponents and x 1 component (all times a factor of 2 for spin degeneracy). the 

integral of 8 -3, . IS 

(5.2) 
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where N i8 the number of lattice sites. This 8trongcoupling limit is analogous to 

the static limit of QCD, in which the vacuum wave functional is proportional to 

the quark mass raised to a large power. We note that both term8 in eq. (4.4) 

must be present in order that this static limit exist. 

We csn now perform a strong-coupling expansion in powers of ~,,,r~,~ 

about the static limit. To all orders in this expansion, the spectrum of the 

theory contains only massive states, even though the SU(5) x U(1) chiral sym- 

metry is exact, and the elementary fermions p,$,x are able to acquire Dirac 

masses consistent with the SU(5) x U(1) chiral symmetry by pairing up with 

composite fermion states. I 

For ezample, the contribution to the propagator (x,& to zeroth order in 

rIm2 and leading order in n is indicated in F’ig. 1. We see that x propagates like a 

&sive Dirac fermion, with the composite state ~99 providing the required 

additional degrees of freedom. 

To zeroth order in ~1.2 and all orders in n,,,, the fermion mode doubling 

persists: all of the 16 modes associated with x, for example, have identical pro- 

pagators. The degeneracy of the ordinsry modes and mirror modes is lifted in 

leading order in 71.2. A contribution to (x,& which lifts the degeneracy is 

shown in F’ig. 2. Loosely speaking, the degeneracy is lifted because modes which 

live on different sublattices to ail orders in c,*,~ and zerot.h order ih 71.2 become 

coupled together to first order in~1.2. See Appendix A for further details. 

In perturbation theory, 71,s must be regarded as small. and the splittings 

between ordinary modes and mirror modes are small compared to the intrinsic 

mass scale l/ a of the theory. But the Strong-coupling expansion demonstrates 

that it is possible for all the mirror modes to acquire mas8es consistent with the 

SU(5) x U(1) chiral symmetry. The key point is that the generalized ‘Wilson 

terms” we have added to the lattice action produce bound stafes which 
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transform appropriately under SU(5) x U(1) so that Dirac masses consistent 

with the SU(5) x U( 1) symmetry are allowed. 

Our hope, now, is that it is possible by a suitable tming of parameters to 

drive the masses of the ordinary modes down to zero, while maintaining split- 

tings of order l/a between the ordinary modes and the mirror modes. If so, 

there, exists a continuum limit in which the ordinary modes survive and the mir- 

ror modes decouple. This possibility is further discussed in the next section. 

A static limit and strong-coupling expansion like that presented here for 

the SU(5) model can be formulated for many chiral gauge theories. Other exam- 

ples ere discussed in Appendix B. 

8. The ContinuumLimit 

The outcome of our attempt to construct a chiral gauge theory as the con- 

tinuum limit of a lattice theory depends on the phase structure of the lattice 

theory defined in eq. (5.1). We have not determined this phase structure. In this 

section, we will consider different possible types of behavior, and will discuss 

their implications. 

This lattice theory can be studied in both weak-coupling perturbation 

theory and strong-coupling perturbation theory. Weak-coupling perturbation 

theory is an expansion in h1.z and ~12, with IC taken to be of order one; to all ord- 

ers in this expansion., there is a doubled massless fermion spectrum. Strong- 

coupling perturbation theory is an expansion in K; and tl.s, with AL2 taken to be 

of order one; the fermions are massive to all orders of this expansion, and the 

mirror fermion modes are split from the ordinary modes in fkst order in T~,~. 

(Note that “strong” and “weak” refer here to the value of the four-fermion cou- 

pling; the gauge coupling has been set equal to zero.) 
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Let us now speculate about the behavior of this theory as a function of h12 

and 712, with n tied at a nonzero value. In order to simplify the discussion, we 

will assume initiaIly that q,r2 and hi,& in eq. (4.2) and (4.4) obey relations such 

that the action respects an SO( 10) symmetry under which (x,$, p) transform as 

the irreducible representation 16. Hence, we may speak of a single parameter h 

end a single T, and of the phase diagram in the h-r plane. later, we wiIl con- 

sider the effect of reinstating the perturbations which break the SO(10) sym- 

metry back down to SU(5) x U(1). (We did not consider the SO(10) model from 

the beginning because, if we gauge SO(10). then there is no global U(1) sym- 

metry whose realization we can investigate.) 

First, we consider the phase structure along the line T = 0. The strong cou- 

pling expansion indicates that, for A sufficiently large. there are massive compo- 

site fermions which are degenerate with the elementary fermions; that is, ele- 

mentary two-component Weyl termions and composite two-r=omponent Weyl ter- 

miens pair up to become massive four-component Dirac fermions. As h 

decreases, one expects the composite states to become less tightly bound, and 

to approach threshold. At a critical coupling &,, the bound states disappear, 

and the elementary fermions become massless. For t = 0, the mirror fermion 

modes and the ordinary modes are degenerate; therefore in the continuum limit 

of the lattice theory with A s X, and T = 0, there are doubled massless termions. 

Now suppose that we allow T to assume a nonzero value. The mu&ifermion 

Wilson terms give different contributions to the effective value of A at large dis- 

tances for ordinary modes and mirror modes. Therefore. we expect a wedge to 

open up in the k-r plane, as indicated in Fig. 3, in between the curves along 

which bound states of ordinary termions and mirror ferrnions approach.thres- 

hold. Inside this wedge, composite states containing mirror fermion modes 

remain bound, so that the mirror modes are massive. But the ordinary modes 
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are massless, and interact weakly at distance scales large compared to the lat- 

tice spacing. In the continuum limit of the lattice theory inside the wedge, a.lI 

mirror fermion excitations decouple, and we obtain a theory of massless free 

chiral fermions! Flavor anomahes, such as the anomaly of the global U( 1) 

current in our SU(5) example, arise in the continuum limit as local effects of the 

mirror fermions whitih persist as the mirror termions decouple. 

While there is good reason to believe that a nonrenormalizable coupling can 

produce a bound state in a cutoff theory only if the coupling strength exceeds a 

nonvanishing critical value [26], it is conceivable that the critical value of A is 

actually & = 0. In this case, the fermions have non-zero messes for arbitrarily 

small A, and weak-coupling perturbation theory in A has no radius of conveLc \ 
gence; the approach to the A = 0 limit is nonanalytic. If the critical value of A is 

& = 0 when T = 0, then we expect that the effective value of A at large distances 

vanishes for the various fermion modes along curves in the A-r plane, as in& 

cated in Fig. 4. A continuum limit with undoubled massless fermions can be 

obtained only along these curves, rather than inside a wedge. This situation is 

quite reminiscent of the continuum limit in QCD with Wilson ferxnions. 

We have described above the desired behavior of our lattice theory in the 

A+ plane, which allows the construction of a continuum theory with undoubled 

chiral fermions. Let us now enumerate some of the things which could go wrong; 

that is, circumstances which would prevent the construction of the desired 

chid continuum theory. 

Fit of all, there is a serious danger that our multifermion interactions will 

cause some of the exact symmetries of the lattice theory to become spontane- 

ously broken. Indeed, there are cases in which such spontaneous symmetry 

breakdown is expected [26], even though there is no indication of of it in either 

weak-couphng or strong-coupling perturbation theory [l&27]. As we noted in 



Section 4. spontaneous breakdown of the gauge symmetry wiIl most likely result 

in a failure to construct the desired continuum theory. Even spontaneous 

breakdown of Lore& invariance is a possibility [28). 

Even if the exact symmetries remain manifest and composite fermion 

states exist which become unbound at A = b, it might not be possible, for any 

choice of 7, to maintain masses for the mirror fermion modes of order 1/ a 

whiIe the bound states of the ordinary fermion modes approach threshold. That 

this is possible seems plausible, but is not guaranteed. 

F’inally even if a continuum limit exists with all the properties we desire, it 

might be an unstable fixed point. If it is necessary to tune an infinite number of 

parameters to reach the desired tied point, then our program has failed. 

Is it reasonable to fear either the spontaneous breakdown of the SO(10) 

symmetry or the ineffectiveness of the Wilson perturbation in maintaining a 

splitting between ordinary modes and mirror modes near the bound state thres- 

hold? That these are genuine possibilities is better appreciated if we now corn 

sider the effect of reinstating the perturbations which explicitly break SO(10) 

down to SU(5) x U(1); we denote by A end T the coefficients of the quartic cou- 

plings which preserve the SO( 10) symmetry, and by A’ and T’ the coefficients of 

the corresponding couplings which break SO(l0) but preserve SU(5) x U( 1). The 

point is that we can argue that our strong coupling expansion must be in some 

respect misleading. 

In the expansion about A = =, r = A’ = r’ = 0, there is no indication that 

SO( 10) becomes spontaneously broken at intermediate values of A. F’urther- 

more, in first order in 7, the degeneracy of the ordinary and mirror modes cou- 

pling to (x, 9, p)-a 16 of SO( lo)- is removed. &o, in low order in A’, the degen- 

eracy of the modes coupling to x.4. and p is removed;* this degeneracy is 

4 Wehavefo~thatthcdegareracgisnatnmic;nndin~~erinh’,buthavenor~ 
to expect it to persist in higher orders. 



-21- 

enforced by the SO(10) symmetry, but not by the SU(5) x U(1) symmetry. But it 

is impossible for all these features to persist down to the critical value A = & at 

which the bound states disappear. For if it were possible, then. by choosing 

A = & and 7, A’ small but nonvanishing, we could construct a continuum theory 

in which only the ordinary mode coupling to one of x,9, or rp survives, and which 

has no SU(5) x U( 1) anomalies. No such continuum theory exists. 

We are left to choose from among three surprising possibilities. Perhaps, 

for A=&. r=A’=r’= 0, the SO( 10) symmetry is spontaneously broken to a 

nonchiral symmetry. Then it is consistent for splittings of order r and order 

A’ to occur; the exact unbroken symmetries of the lattice theory will not become 

anomalous in the continuum theory. Perhaps the SO( 10) symmetry (or a chiral 

subgroup) remains menifest at A = &, but there is no splitting even for nonzero 

r between the critical values of A at which the bound states of ordinary modes 

and mirror modes disappear, contrary to our expectation based on the behavior 

for large A; Or perhaps. when A = X,, there is no order A’ splitting of the degen- 

eracy of x,3, and p. Each of the latter two possibiiities requires that there is a 

mode degeneracy which is not enforced by any apparent exact symmetry, but 

this requirement seems less implausible when we recall that the chiral mode 

doubling is already an example of such a phenomenon. Our attempt to con- 

struct a chiral gauge theory will succeed only if the third possibility is realized. 

The point of the above discussion is not that it might be possible to con- 

struct a chiral gauge theory with gauge group SO( 10) but not one in which the 

subgroup SU(5) is gauged. Clearly, if we can gauge SO(10) then we can gauge 

any subgroup: we need only break SO( 10) to SU(5) by the Higgs mechanism. 

Rather, the point is that we can gain insight into how our theory might behave 

by first considering the theory with SO( 10) symmetry, and then inquiring about 

the efTect of a perturbation which breaks SO(10) to SU(5) x U( 1). It may be 
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enlightening, in fact, to back up another step and consider a theory with an even 

larger symmetry. 

Regarding our fields x, $, (p as m&sing up a 16 (denoted by $) of an exact 

SU( 16) symmetry group, we can construct the SU( 16)~invariant action 

(6.2) 

The strong coupling expansion in this theory is qualitatively similar to that of 

the SO(10) theory; for large A, ordinary modes and m irror modes are split in 

order r. Since the exact SU(16) symmetry is “anomalous’‘-a continuum  theory 

with a single Weyl ferm ion transform ing as a 16 of SU( 16) has anomalies-there 

are three possible types of behavior of tbis theory that we can distinguish for 

A N &, the critical value of A at which the bound states disappear, 

The SU(16) symmetry m ight be spontaneously broken to a nonchiral sym- 

metry (such as SO( 16)) for A N h,. Then we are unable to obtain a chiral contin- 

uum theory for any value of 7. The SU( 16) symmetry m ight be unbroken, or 

spontaneously broken to a subgroup under which the ferm ions have anomalies. 

3ut then we know that the W ilson term  must be unable to split the ordinary and 

m irror modes at A w & ; otherwise, we would have a lattice theory with exact. 

SU(16) symmetry that acquired SU(16) anomalies in the continuum  lim it, which 

is impossible. So again we cannot obtain a chiral continuum  theory. Finally, 

SU(16) m ight be spontaneously broken to a chiral subgroup (such as SO(10)) 
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under which the fermions transform as a complex representation with no ano- 

maly. Only in the third case can we succeed in constructizrg a chtral continuum 

theory. But even if the third, favorable, case is not selected in the limit of exact 

ml6) symmetry we might be able to encourage the theory to realize this possi- 

bility by adding perturbations which break SU( 18) but preserve, say, SO( 10). 
. 

We hope, now. that the reader appreciates that there are serious questions 

about the correctness of the phase structure we have proposed in Fig. 2, but 

that we are not being wildly optimistic in suggesting that a chiral continuum 

theory can be constructed by the method we have suggested. 

So fak, we have discussed our chisel theory only for the case of vanishing 

gauge coupling. Let us now consider how the theory is affected when the gauge 

coupling constant is turned on. At short distances, much less than the 

confinement scale of the gauge interaction. our previous picture is unmodified. 

The gauge coupling does not interfere with our ability to split the mirror modes 

from the ordinary modes, and if there is a stable fixed point with chiral fermion 

content when the gauge coupling vanishes, then we will still be able to reach that 

Bxed point after the gauge coupling is turned on. As usual in an asymptotically- 

free lattice gauge theory, the gauge coupling will be chosen to vanish at the 

fixed point. 

At large distances, the effective gauge coupling becomes strong, and the 

theory is substantially modSed by the gauge interaction. Our goa& of course, 

has been to study this nonperturbative physics; in particular. we wish to deter- 

mine the realization of the gauge symmetry and global fkor symmetries of the 

chid gauge theory. 

A hint concerning the realization of the global U( 1) symmetry of our SU(5) 

model can be extracted from the expansion about in6nit.e gauge coupling, g = =. 

For infInite gauge coupling, only SU(S)-singlet states can propagate. Hence, to 
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any finite order in the hopping parameter n, the fermion spectrum consists of 

modes coupling to the elementary “spectator” field x and of modes coupling to 

the SU(S)-singlet composite operator @$. Furthermore, the U(1) global sym- 

metry is manifest for large and small gauge coupling to any order in n; there is 

no massless “spin wave” excitation. The U( 1) symmetry thus has a status similar 

to that of the vectorlike global symmetries of QCD, treated by Wilson’s method. 

This observation bolsters the contention that the U(1) symmetry remains mar& 

fest in the continuum limit, with the ‘t Hooft anomaly condition saturated by a 

massless fermion coupling to the composite operator &. 

In practicer whether we do numerical or strong-coupling calculations, we 

can verify that the chiral-invariant continuum limit has been reached only by 

checking that the particle spectrum sat&&es certain requirements; hence, 

there is a possible ambiguity. In our SU(5) model, for example, the spectrum of 

the continuum theory should contain either a Goldstone boson, if the global U( 1) 

is spontaneously broken or a massless fermion, if U( 1) is unbroken. One hopes 

that only one of these two possibilities can be realized by an appropriate tuning 

of parameters. If so, the realization of the U(1) symmetry can be determined by 

an analysis of the spectrum of the theory. 

We do not expect this ambiguity to arise: it is merely a possibility which we 

cannot exclude. In the v(5) model. the perturbation (4.4) ‘induces a mass term 

in the effective lattice action coupling the spectator fermion x to the SU(5)- 

singlet composite fermion operator B = m. Our expectation is that this mass 

term can be tuned to zero, so that the spectator decouples from the chirai 

gauge theory. When the spectator is decoupled, B will be massless, if the global 

. U( 1) symmetry is not spontaneotily broken 

Siiarly,.well-formulated questions about the realization of the gauge sym- 

metry can be expressed as conditions on the spectrum, and can thus be 



addressed by numerical or strong-coupling lattice calculations. 

There are two central questions concerning chtral gauge theories. The first 

question is. can continuum theories with gauged chiml symmetries be con- 

structed at all? The second question is. how are the gauge and global sym- 

metries of these theories realized? In this paper, we have addressed only the 

first question, and we have arrived at no uneqtivocal answer. 

However, we have proposed a scheme for construc.ting continuum chiral 

gauge theories which we believe has a reasonable chance of working. and the 

validity of our scheme can be checked 

We have shown that it is possible, without breaking the gauge symmetry, to 

construct a strong-coupling limit of a lattice chiral gauge theory in which all fern 

miens are massive, and the “mirror” fermion modes are heavier than the “ordi- 

nary” fermion modes. Elementary termions transforming as a complex 

representation of the gauge group are able to acquire explicit masses consistent 

with the gauge symmetry by pairing up with composite fermion states 

transforming as the conjugate representation of the gauge group. The compo- 

site fermion states are bound, not by the gauge interaction, but by an auxihary 

interaction which has been introduced for this explicit purpose. 

The composite states containing ordinary fermion modes become unbound 

for some critical value of the coupling strength of the auxiliary interaction We 

argued that, if large splittings between the ordinary modes and mirror modes 

c& be maintained at the critical point, then a continuum chiral gauge theory 

can be constructed. 

In principle, Monte Carlo calculations implementing our scheme can be 

done, but reasonably efficient methods for.dealing with fermions will be needed. 
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One possible approach is to introduce auxihary scalar variables so that the 

action can be rewritten in a form quadratic in fermionic variables, and then 

integrate out the fermions. The nonlocal terms in the resulting effective action 

are an essential pert of the dynamics, and cannot be ignored. Numerical 

analysis of a chiral gauge theory should begin with a search for a critical point in 

the theory with vanishing gauge coupling. 

It may also prove useN to carry out more detailed calculations in strong- 

coupling perturbation theory. One might gain insight into the phase structure 

of the ungauged theory by calculating to su.Eiciently high order in the expansion 

in K: end 7. And, it may be possible to study the full gauge theory close to the 

critical point by doing high-order calculations, and thus obtain some informa- 

tion about the spectrum of the continuum theory. 

Our attempts to construct chirel gauge theories on the lattice have led us 

to propose a complicated method involving speculative dynamics. We make this 

proposal because we see no alternative. I1 The fermion doubling problem is a 

generic problem for any theory which has chiral symmetry and is regulated at 

short distances; symmetries which are to acquire anomalies in the continuum 

theory must be explicitly broken in the lattice theory. Moreover, it is impossible 

to give mass to the mirror fermion modes in weak-coupling perturbation theory 

in a chiral gauge theory without eitplicitly breaking the gauge symmetry. Thus 

one is led to construct lattice theories with symmetry-breaking terms of high 

dimension and to seek nontrivial fixed points in these theories. In this paper, we 

have taken a first tentative step in this direction. 

/ l with the possible exception of the method of rd. [IS]. 
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~captians 

1. Contribution to (&> of zeroth order in T and Leading order in n. 

2. Contribution to (x,,xJ).of first order in r . 

3. Phase diagram in the A- plane, assuming X, # 0. Composite fermion 

states go to threshold along the curves shown In the shaded region, there 

is a massless undoubied fermion mode. 

4. Phase diagram in the Xv plane, assuming X, = 0. There are massless 

undoubled fermion modes along the curves shown. 

5. Contributions to the recursion relation for S’(rr,x) (a) of order ti, (b) of 

order 7. 
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In this appendix we describe in greater detail the strong-coupling expansion 

formulated in Section 5. We will determine the spectrum of low-lying fermion 

and scalar states to leading nontrivial order in the strong-coupling expansion. 

Here we consider only the SU(5) model discussed in the text. Other examples 

&e considered in Appendix B. 

The lattice action of Eq. (5.1) for the (ungauged) SU(5) model is given more 

where 

and 

The kinetic terms for the fermions may be written 

(A. 4) 

N 

with c defined by 

iAb+fJ)=~(~(n+@-A(R -ii)); (A.5) 
E P 

where p is a unit shift in the positive ~1 direction. Fiiy, our multifermion 
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‘Wilson terms” are 

where A is the shift operator introduced in Eq. (4.3) 

It is convenient to absorb the locd part of SI(~~,TZ) into the zero&order 

action. We then obtain the new zeroth-order action 

where 

- &=x,+ + (i t 1.2) . (A.91 

We now regard the strong coupling expansion as an expansion in n and T with A 

held tied. 

WhenIc,=q=rc,=rI=rZ = 0 t&we are no couplings between neighboring 

sites, and the vacuum functional is simply 

*(e-“‘3 = /a = y-e -y = ~(C(h;A#o;Az>~) , (A. 10) 
n 

where C is a numerical constant which results from doing the integrals over the 

fermionic degrees of freedom at each site. The strong coupling limit is a static 

limit in which no propagation occurs. Propagation from site to site may be 

treated perturbatively by expanding in the “hopping parameters’* n and T. 
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We now turn to the analysis of the spectrum of low-lying states in the strong 

coupling limit. To begin let us find the mass of the lightest states which couple 

to the spectator field x. This mass can be extracted from the asymptotic large- 

distance behavior of the two-point function 

We will find the mass by solving a recursion relation for Sx which holds to lead- 

ing nontrivial order in K; and T. 

The recursion relation for Sx to order 2 and order r is 

2 - 

SJp(h;x) = <B+*(n) e-s~(0))/(e+)I 

where B is the composite operator 

R4n) = 

(A 12) 

(A 13) 

(A 14) 

The origin of the two terms in Eq. (A12) is indicated in F’ig. 5. If the field x sits 

at site n, the integration over x(n) requires one less power of hi from the expan- 

sion of exp(-So(n)]. The missing Q and 9 variables must hop over from neigh- 

boring sites. The contribution to SE of lowest order in rr; is generated if (p and 

both +‘s hop over together from the same site. 

It is already suggested by Eq. (A12) that the states coupiing to x and a are 

mixed in lowest nontrivial order in the expansion in n, producing a massive 

four-component fermion To find the mass to lowest order in x;. we note that S, 

obeys an exact recursion relation 



(A. 15) 

Now, rewriting (A. 12) and (k 15) in momentum space, we obtain 

(A. 16) 

(A 17) 

Applying (A. 16) twice and invoking (A 17) yields 

Inverting (AM), we find 

’ S&(p;x) = (A. 19) 

Finally we see that the fleld x couples to 16 massive modes, with masses given by 

the locations of the poles of Sg(p; x), or 

(A. 20) 

where each fla is either 0 or IF. 

In Eq. (k20) we find justification for the comments in Section 5. When 

rl = 0, there are 16 degenerate fermion modes, as we expected. For 7l f 0, the 

degeneracy is removed, and there is a unique mode of lowest mass (the “orcli- 

II@’ mode) which is split from the nearest mirror modes by an amount propor- 

tional to 2rl/hla To this order of perturbation theory, we may tune 71 so that 
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the ordinary x mode becomes massless while all mirror modes remain massive. 

Proceeding in exactly the same way, we may now find the spectrum of low- 

lying states which couple to the fields J( and ‘I, The only new complication is that 

in each case the field appears in both terms of the unperturbed action So and of 

Sr. Therefore, the states which couple to $ (or 0) are a linear combination of 

two different composite operators. For 9 the two composite operatom Bf and 

Bg are given by 

To simplify our remaining analysis we will chose to consider the special case 

where q = nr =i.pr, A, =A,=A. andr1=T2 E I= in Eq. (Al). Then the fields 

91 Pij* and x ten be combined to form a single 164imensional spinor represen- 

tation of O(10) and the action is invariant under 0( 10) symmetry. In particular 

the two SU(5) x U(1) invariants Se, and SW given in Eqs. (A2) and (A3) combine 

to form a single quartic invariant of O(l0). In this case, the linear combination 

of Bf and BJ which mixes with the 3 field is just 

It is clear that for the O(10) invariant action, the previous analysis for the x 

field applies. We can immediately conclude that each of the # and w flefds 

couples to an associated composite operator to give 16 massive modes with 

masses m$=m,2 = rn: , where 

4 = -$30A2(5)4(l - &xcosp@a)2] , 
P 

(A. 22) 

to lowest order in n and 7. as follows from Eq. (k20). For r # 0 there is a unique 



mode of lowest mass (the *“oMnary” mode) which is split from the nearest mir 

ror modes by an amount proportional to 2r/Aa 

’ In addition to the elementary and composite fermion states, there are com- 

posite scalar states in the strong-coupling limit. Returning to the SU(5) invari- 

ant action of Eq. (Al); we consider, for example, the composite scalar state with 

quantum numbers of kT u&3. We may use the operator 

as an interpolating Beld for this scalar state. To find the mass we consider the 

Green’s function 

G(n) = (A'(n) cs g(O)}/ ( us) . w4 

To lowest non-trivial order in c this Green’s function satisfies the recursion rela- 

tion 

wherecl=<+ndce = 4ii. Solving for the momentum space propaga- 

Thus we see that there is a composite scalar state in the 5 representation of 

SU(5) with mass 

to leading order in n. The leading contribution to the recursion relation involv- 

ing r is of order &, and we are therefore just.iBed in neglecting it. The 



contributions of this order have no special status for the scalar states, because 

there is no degeneracy to be removed by Sl. 

By the same reasoning, we tid that there are massive composite scalars 

which couple to each of the “spin-zero” fermion bilinears. In the special case of 

0( 10) symmetry these scalars transform as the 10 and 126 representations. 

In strong coupling perturbation theory, Yukawa couplings will also be 

induced between the fermion and scalar states described above. In fact, a 

strong coupling limit similar to the one discussed here could have been con- 

structed if we had i&roduced into the lattice action, instead of multifermion 

interactions, Yukawa couplings of the fermions to elementary scalars in 

. appropriate representations of SU(5). Then S, would be replaced by terms of 

the form - . 

- 2 ~Ar(n)(xT(n + fi)u2$<(n) f xT(n)u2@(n.+ p) - 2xr(n) u2@*(n)] + AC. 
F 

where A*(n) denotes the scalar field transforming as the 5 representation of 

We conclude with a comment about the effect of higher-order corrections to 

the strong~oupling limit. The degeneracy of the fermion modes, broken in 

order r, will not be restored in any Unite order of perturbation theory. But 

higher order corrections will generate structure for the composite states. We 

expect the lightest, most weekly bound, composite state, that whose con&i- 

tuents are “ordinary” fermion modes, to have the largest characteristic size, a 

size roughly inversely proportional to its mess. Therefore, as that bound state 

approaches threshold, it effectively disappears from the spectrum, if we co&e 

our attention to physics at some tied finite distance scale. 
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&pend$xR CltheroiralGaugeTheorie8 

In this appendix, we discuss briefly some other examples of chiral gauge 

theories. For each example, we construct the additional terms of the lattice 

action w&h are needed to remove the degeneracy of the ordinary Sermion 

modes and the mirror modes. The static limit of each example and the strong- 

coupling expansion about that limit are described. We also consider an example 

of a lattice action for which no static limit exists. 

Our first example is a simple generalization of the SU(5) model [2]. The 

gauge group is SU(N) and the fermions transform as 

B+(N-4)%. 
ru 

B. 1) 

a representation free of SU(M) anomalies. (Here ij are SU(N) indices and 

I a= 1, -a- , N - 4 is a flavor index.) This model respects a global flavor sym- 

G,e%J(N -4)XU(l), U3.2) 

where the U( 1) charge assignments are 

Q,=N-4. Q!,=-(N-2) (B-3) 

and the anomalies of the global symmetry currents are given by 

where %J,,~ are SU(N - 4) generators. 
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We wish to construct a lattice action for this model which explicitly breaks 

alI global symmetries which have anomalies. The construction proceeds as in 

the SU(5) model. First, we observe [2] that there is an SU(N)+inglet composite 

operator which satisfies the anomaly matching conditions: that is which repro- 

duces the flavor anomalies of Eq. (B.4). It is 

(B.5) 

which transforms as (lJ3, -N) under GI = SU(N - 4) x U(1). 

Next, we introduce a spectator fermion x which is a singlet under the gauge 

group G = SU(N), and transforms under G, as (m, fV), the representation conju- 

gate to that according to which the composite operator B transforms. Then the 

interaction 

S&) = &p(n) 8s (n) + hc. , (B-6) 

respects an SU(N - 4) x U(1) symmetry group w-bich has no anomalies. 

Finally, we must explicitly break the “axial” U(1) global symmetry which is 

to be spoiled by instanton effects in the continuum theory. For this purpose, we 

introduce an interaction 

s&n) = [p(#“-“&Jn) - $uN_,(7c)]e~ ..’ ON4 + h.c. (B-7) 

(CoLor and spin indices are suppressed in (B.7).) The lattice action for this 

(ungauged) W(N) od 1, m e generalizing Eq. (Al), becomes 

where 

03.9) 
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and 

(B.lO) 

with A detied as in Eq. (A?). 

Let us now consider the static limit (n = r = 0) of this lattice theory. The 

condition for a nontrivial vacuum functional in the static limit is 

(P-M, = J--p”oy # 0. (B.11) 

For this condition to be satisfied, there must be a term in the expansion of s-=O 

in which every fermionic variable appears exactly one. That is, ,there must exist 

integers TL~ and ~rz which satisfy 

*x = $(N - 3)(N y 4) = n1 , 

dhip= $N(N-l)=~~+(N-2)7+& (B. 12) 

~~=N(N-4)=2nl+(N-4)?ts. 

Equation (B.12) is solved by nl = &V - 3)(N - 4). ne = 3, and a detailed check 

confirms that, indeed, 

Thus, a nontrivial static limit exists. 

A strong coupling expansion in u; and T can now be formulated, as for the 

SU(5) model. The degeneracy of the ordinary fermion modes and the mirror 

excitations will be lifted in order T , 

Examde 2 

The gauge group of this model is G = W(3), and the fermions transform as 

the anomaly-free representation 



-4x- 

EF +2;;;. (B. 14) 
l )l * 

This model is the simplest example of a chiral gauge theory, that is. it is the 

chid gauge theory with the smallest number of degrees of freedom We there- 

fore regard it as a leading candidate for analysis by Monte Carlo techniques. 

The global flavor symmetry group is 

Gf = W(2) x U(1) (B. 15) 

where the U(1) charge assignments are 

, Q, = 1 I o* = -2 I (B. 16) 

and the anomalies of the flavor currents are 

nQ=-9, ns9=-81. RQQsQ,,=-l&t,- (B. 17) 

Again, we 6nd a G-singlet composite operator which satisfies the Gf anomaly 

conditions. namely - 

which transforms as (In, -3) under Gf If we introduce the SU(3)-singlet specta- 

tor fermion x coupled to B by 

S&) = xaWB~ c hc. (B. 19) 

then Sol respects an SU(2) x U( 1) symmetry group which has no anomalies. 

Now we must explicitly break the “axial” U(1) symmetry. An SU(3) instan- 

ton would generate the operator p so 3 lo, but this operator can be reduced to a 

product of SU(3) x Gr singlets of the form [(p q $)2]s. Hence we can break the 

unwanted U( 1) symmetry with the SU(3) x G, invariant interaction 



(Spin indices are suppressed in (B.20).) This interaction breaks a 2~ subgroup 

of the “axial” U( 1) which would survive in the presence of instantons. 

Our lattice action for this model is 

(8.21) 

and 

The condition for the existence of a nontrivial static limit (K = 7 = 0) of this 

model, 0 # s seXSO = (A;x,)“i(A&)“r. is 
I) 

&mx=3=nrr, 
&mp=15=nhl+4% (B.24) 
a??zg=l2=2n~+2np, 

which has the solution nI = 9 = 3. We note that it is necessary to break the & 

discrete symmetry in order to ensure that a nontrivial static limit exists. 

Examde 3 

In this example, the gauge group is G = SU(8) and the fermions are in an 

anomaly-free representation 

El +5a, 
VW *i 

and the global flavor symmetry group is 

(B.25) 



. 

G, = SU(5) x U(1) . (B.26) 

where the U(1) charge assignments are 

49 = 1, Qe = -3. (B.27) 

It is impossible in this case to construct SU(B)singlet composite fermion opera- 

tors with Quantum numbers which saturate the Gf anomaly condition In fact, 

there are no SU(8)-singlet composite fermion operators at a& any operator con- 

structed from an odd number of the elementary fermion fields has odd &ality. 

In order to construct a lattice theory in which all global flavor symmetries 

with anomalies are explicitly broken, we introduce the interactions 

and 

So&) = (q&(4 ~2 pti (n))(g&&4 u2+“(n>)d- + h.c. (B.29) 

These interactions break GJ to the anomaly-free subgroup HI = G(4), and also 

explicitly break the “axial” U( 1) symmetry which is spoiled by instantons in the 

continuum theory. 

Our lattice action for this model is 

with the terms again defined as in (B.9) and (B.lO). The necessary condition for 

the existence of a static limit is 



which is satisfied by TLL~ = 16, no = 8. 

Now consider a model with gauge group G = SU(7) and fermions in the 

anomdy-tree representation 

El e 
vw+r*L+z- 

(B.31) 

The global flavor symmetry group of this model is 

G, = U(1)1 X U(l)2 , 

where the charge assignments are 

(SIB Q2),, = (1.4) 

(91, Qd, = l-3, -7) 

(Q,. Q& = (5, -5) - 

(B.32) . 

(B.33) 

To construct a lattice theory in which all global flavor symmetries with 

anomalies are explicitly broken, we first note that the U(1)1 anomaly-matching 

condition is satisfied by the composite operator 

which has U( 1)1 charge 

(Qh = 7. 

We therefore introduce an SU(7)-singlet spectator fermion x coupled to B by 

Sol(n) = $(n)B=(n) + h.c. 

The U( 1)~ and “axial” U(1) symmetries may be broken by the U( l),-invariant 

interactions 



If we choose the zero&order action to be 

then the necessary condition for the existence of a static limit is 

. c&nx= l=q, , 
&m?7=35=7tfj+3?Q, 
dim(p=2l=nt,+2~+?23* 
dhq= 7=27L,+m, 

which is solved by rrl = 1. vts = 5, ns = 10. The strong coupling expansion about 

the static limit may be formulated as before. 

Remarks 

As the above examples make clear, the problem of constructing a lattice 

action which meets our criteria is closely related to the problem of tiding a 

realization of the global flavor symmetry consistent with ‘t Hooft’s anomaly- 

matching condition. We require the lattice action to be gauge-invariant and to 

respect no global flavor symmetries which would have anomalies in the contin- 

uum theory. To meet this requirement, we seek gauge-singlet composite fer- 

mien operators which satisfy the anomaIy-matching conditions for some sub- 

group of the flavor group, and introduce spectator fermion field coupled to these - 

composite operators. We then explicitIy break any remaining anomalous flavor 

symmetries with gauge-invariant multi-fermion “condensates.” 



* 

. 

A similar procedure would be carried out to find candidate realizations of 

the global flavor symmetry which are consistent with the anomaly-matching con- 

dition in the continuum theory. In fact, we have performed such an analysis for 

a number of chiral gauge theories. as reported in Ref. [‘?I. The formulations of 

the lattice theories described in Examples 1 through 4 are a by-product of that 

EUXiIJWiS. 

ln each of Examples 1 through 4, we discovered that the simplest lattice 

theory in which all anomalous symmetries (including the axial U(1)) were exph- 

citly broken had a static limit. Since the existence of a static limit is a nom 

trivial algebraic constraint, this discovery is a bit of a surprise. It applies to 

many other, but not all. of the models we have analyzed. In some cases we have 

found it cbnvenient to introduce interactions in which spectator fermion fields 

appear nonlinearly in order to ensure the existence of a static limit. 

Eb3Ilde 5 

To explain what is meant by the nonexistence of a static limit in a lattice 

theory, we describe here a simple toy model which sliders from this disease. 

Consider a theory defined on a one-dimensional lattice, 4th action 

s = ~Cain(n) + So(-)1 
n 

where 

In the static limit, n; = 0, the vacuum-to-vacuum amplitude clearly vanishes, 



. 

because each term in the expansion of e-so’S’ contains an even number of 

a&)‘~ and u&)‘s. 

Now consider the quantum mechanical system with Hamiltonian 

H= -S,(n). Tbis Hamiltonian acts on a Hilbert space consisting of the eight 

states /ml, nag, ms) where rni =O or 1. The eigenstates of H are easily found to 

be 

, 

E&en&ate Eigenvalue 

$[*.a lOotI) + 1110) + iOll>l 1 IlOl)] l * 

++\n }lll) + lOOl> + ~lcm} + lOlO>] A3 

$g[ I l&9 - WOI 0 

&[ (001) - I loo)] 0 

~[lllO> + loll) -2)101)] 0 

&[lOOl> + IloO) - 2lOlO)] 0 

We see that ail eigenvalues of H are degenerate. ‘Ibis degeneracy is a come- 

quence of a “charged conjugation’* symmetry which interchanges rnt = 0 and 

mi = 1. and commutes with H. In tact, the Hilbert space divides into two sec- 

tors, with even and odd fermion number. which are preserved by H, but are 

interchenged by “charge conjugatiolz” 

This behavior is characteristic of theories which. in our kmguege, have no 

static limit. lf the Hilbert space on which the static Hemiltonian acts decom- 

poses into physicaLly indistingukhable sectors which are preserved by the Ham- 

ilton&m, then our procedure for formulating an expansion about the static limit 



(3) 

(4) 

massless 




